
Fine-Grain Authorization Policies in the GRID:
Design and Implementation

K. Keahey
Argonne National Lab, Argonne, IL, USA

V. Welch
University of Chicago, Chicago, IL, USA

S. Lang

Argonne National Lab,
Argonne, IL, USA

B. Liu
University of Houston,

Houston, TX, USA

S. Meder
University of Chicago,

Chicago, IL, USA

Abstract

In this paper we describe our work on enabling fine-grain authorization for resource usage and management. We
address the need of Virtual Organizations (VOs) to enforce their own polices in addition to those of the resource
owners, both in regard to resource consumption and job management. To implement this design we propose
changes and extensions to the Globus Toolkit’s version 2 (GT2) resource management mechanism. We describe the
prototype and the policy language that we designed to express fine-grain policies. We then analyze our solution and
describe plans for future work.

1. Introduction

Virtual Organizations (VOs) [1] have become a com-
mon way to structure collaborations where both partici-
pants and resources may be distributed not only geo-
graphically, but also across different organizational
domains. A traditional mode of operation requires users
to establish direct relationships (ie., in the form of user
accounts) with resources they wished to use but didn’t
own. In a Grid environment, where both the resource
pool and the user pool are large and change dynami-
cally, this model becomes unmanageably complex. We
therefore observe a trend towards making VO creden-
tials, used in conjunction with resource provider poli-
cies, the basis of sharing in Grids. In the VO model,
resource providers typically outsource some subset of
their policy administration to the VO. This allows the
VO to coordinate policy across resources in different
domains to form a consistent policy environment in
which its participants can operate. Such environment
requires mechanisms for the specification and enforce-
ment of VO-wide policies allowing the VO to enforce
VO-specific policies on tasks and resources owned by
VO participants.

Another trend developing as the Grid potential becomes
realized is the need to express and enforce fine-grain
policies on the usage of resources. These can no longer
be expressed by simple access control as the manager
want to specify exactly what fractions or configurations
of resource may be used by a given entity. In addition,
while some VOs are focused on sharing of hardware

resources (e.g. CPUs and storage), for others the pri-
mary motivation is to coordinate sharing of application
services [2] requiring access to both software and
hardware. In these cases the VO members should not
be running arbitrary code, but only applications sanc-
tioned by VO policy. This policy may also be dynamic,
adapting over time depending on factors such as current
resource utilization, a member's role in the VO, an ac-
tive demo for a funding agency that should have prior-
ity, etc.

In this paper, we answer the requirements posed by
these two trends. We present a design for service and
resource management that enables a VO and resource
managers to specify fine-grain service and resource
usage policies using VO credentials and allows re-
sources to enforce those policies. We implement our
design as extensions to the Globus Toolkit version 2
(GT2) resource management mechanism [3]. We then
consider policy enforcement in the context of two types
of policy targets: application services, and traditional
computing resources. A prototype of this implementa-
tion, combined with the Akenti authorization system
[4], was demonstrated at the SC02 conference and is
currently being adopted by the National Fusion Col-
laboratory [2].

This paper is organized as follows. In section 2, we
present a use case scenario and concrete requirements
guiding our design. In section 3 we define our problem.
We follow this by a discussion of the capabilities of the
Globus Toolkit’s resource management (GRAM) [5]
mechanism and describe extensions needed to GRAM

keahey
International Workshop on Middleware for Grid Computing (MGC 2003). Rio de Janeiro, Brazil, June, 2003

to support our architecture. Finally, we analyze our
solution and conclude the paper.

2. Use Case Scenario and Requirements

In a typical VO scenario, a resource provider has
reached an agreement with a VO to allow the VO to use
some resource allocation. The resource providers think
of the allocation in a coarse-grained manner: they are
concerned about how many resources the VO can use
as a whole, but they are not concerned about how allo-
cation is used inside the VO.

The finer-grained specification of resource usage
among the VO participants is the responsibility of the
VO. For example, the VO has two primary classifica-
tions of its members:

• One group developing, installing and debugging
the application services used by the VO to perform
their scientific computation. This group may need
to run many types of processes (e.g. compilers, de-
buggers, applications services) in order to debug
and deploy the VO application services, but should
be consuming small amounts of traditional comput-
ing resources (e.g. CPU, disk and bandwidth) in
doing so.

• The second group performs analysis using the ap-
plication services. This group may need the ability
to consume large amounts of resources in order to
run simulations related to their research.

Thus, the VO may wish to specify finer-grain policies
that certain users may use more or less resources than
others. These policies may be dynamic and change over
time as critical deadlines approach.

In addition to policy on the resource utilization, the VO
wishes to be able to manage jobs running on VO re-
sources. For example, users often have long-running
computational jobs using VO resources and the VO
often has short-notice high-priority jobs that require
immediate access to resources. This requires suspend-
ing existing jobs to free up resources; something that
normally only the user that submitted the job has the
right to do. Since going through the user who submitted
the original job may not always be an option, the VO
wants to give a group of it’s members the ability to
manage any jobs using VO resources so they can in-
stantiate high-priority jobs on short notice.

Supporting this scenario places several requirements on
the authorization policy system:

1. Combining policies from different sources. In out-
sourcing a portion the policy administration to the

VO, the policy enforcement mechanism on the re-
source needs to be able to combine policies from
two different sources: the resource owner and the
VO.

2. Fine-grain control of how resources are used. For
the VO to express the differences between how its
user groups are allowed to use resources, the VO
needs to be able to express policies regarding a va-
riety of aspects of resource usage, not just grant
access.

3. VO-wide management of jobs and resource alloca-
tions. The VO wants to be able to treat jobs as re-
sources themselves that can be managed. This
poses a particular challenge since jobs are dy-
namic, so static methods of policy management are
not effective. Users may also start jobs that
shouldn't be under the domain of the VO - e.g. a
user may have allocations on a resource besides
through the VO and jobs invoked under this alter-
nate allocation should not be subject to VO policy.

4. Fine-grain, dynamic enforcement mechanisms. In
order to support any policies, there must be en-
forcement mechanisms capable of supporting them.
Most resources today are capable of policy en-
forcement at the user level, that is, all jobs run by a
given user will have the same policy applied to
them. And these mechanisms are typically stati-
cally configured through file permissions, quota
and the like. Our scenario brings out the require-
ment enforcement mechanism needs to handle dy-
namic, fine-grain policies.

3. Interaction Model

To support the use case described in the previous sec-
tion, we need to provide resource management mecha-
nisms that allow the specification and consistent en-
forcement of authorization and usage policies that come
from both the VO and the resource owner. In addition
to allowing the VO to specify policies on standard
computational resources, like processor time and stor-
age, we need to allow the VO to specify policies on
application services that it deploys as well as long-
running computational jobs instantiated by VO mem-
bers.

In our work we will assume the following interaction
model:

1. A user submitting a request, composed of the job's
description, initiates a job. The request is accom-
panied by the user’s Grid credentials, which may

include the user's personal credentials as well as
VO-issued credentials.

2. This request is evaluated against both local and VO
policies by different policy evaluation points
(PEPs), capable of interpreting the VO and the re-
source management policy respectively, located in
the resource management facilities.

3. If the request is authorized by both PEPs, it is
mapped to a set of local resource credentials (e.g. a
Unix user account). Policy enforcement is carried
out by local enforcement mechanisms operating
based on local credentials.

4. During the job execution, a VO user may make
management requests to the job (e.g. request in-
formation, suspend or resume a job, cancel a job).

4. Grid Resource Management in GT2

Grids are the collection of middleware needed to sup-
port VOs. The Globus Toolkit® is an implementation
of a Grid infrastructure. It provides mechanisms for
security, data management and movement, resource
monitoring and discovery (MDS) and resource acquisi-
tion and management. In this paper we are focusing on
the functionality of resource acquisition and manage-
ment, which is implemented by the GRAM (Grid Re-
source Acquisition and Management) system [5].

The GRAM system has two major software compo-
nents: the Gatekeeper and the Job Manager. The Gate-
keeper is responsible for translating Grid credentials to
local credentials (e.g. mapping the user to a local ac-
count based on their Grid credentials) and creating a
Job Manager Instance to handle the specific job invoca-
tion request. The Job Manager Instance (JMI) is a Grid
service which instantiates and then provides for the
ability to manage a job. Figure 1 shows the interaction
of these elements; in this section we explain their roles
and limitations.

4.1. Gatekeeper

The Gatekeeper is responsible for authenticating the
requesting Grid user, authorizing their job invocation
request and determining the account in which their job
should be run. Authentication, done using the Globus
Toolkit's Grid Security Infrastructure [13], verifies the
validity of the presented Grid credentials, the user's
possession of those credentials and the user's Grid iden-
tity as indicated by those credentials. Authorization is
based on the user’s Grid identity and a policy contained

in a configuration file, the grid-mapfile, which serves
as an access control list. Mapping from the Grid iden-
tity to a local account is also done with the policy in the
grid-mapfile, effectively translating the user’s Grid
credential into a local user credential. Finally, the Gate-
keeper starts up a Job Manage Instance (JMI), execut-
ing with the user’s local credential. This mode of op-
eration requires the user to have an account on the re-
source and implements enforcement by privileges of
the account.

Figure 1: Interaction of the main components of
GRAM

4.2 Job Manager Instance (JMI)

The JMI parses the user’s request, including the job
description, and interfaces with the resource’s job con-
trol system (e.g. LSF, PBS) to initiate the user’s job.
During the job’s execution the JMI monitors its pro-
gress and handles job management requests (e.g. sus-
pend, stop, query, etc.) from the user. As the JMI is run
under the user’s local credential, as defined by the
user’s account, the operating system, and local job con-
trol system are able to enforce local policy on the JMI
and user job by the policy tied to that account.

The JMI does no authorization on job startup since the
Gatekeeper has already done so. However, once the job
has been started, the JMI accepts, authenticates and
authorizes management requests on the job. In GT2, the
authorization policy on these management requests is
static and simple: the Grid identity of the user making
the request must match the Grid identity of the user
who initiated the job.

4.3. GRAM Shortcomings

The current GRAM architecture has a number of short-
comings when matched up with the requirements we
laid out in Section 2:

1. Authorization of user job startup is coarse-grained.
It is based solely on whether a user has an account
on a resource.

2. Authorization on job management is coarse-
grained and static. Only the user who initiated a
job is allowed to manage it.

3. Enforcement is implemented chiefly through the
medium of privileges tied to a statically configured
local account (JMI runs under local user creden-
tial) and is therefore useless for enforcing fine-
grained policy or dynamic policy coming from
sources external to the resource (such as a VO).

4. Local enforcement depends on the rights attached
to the user’s account, not the rights presented by
the user with a specific request; in other words, the
enforcement vehicle is largely accidental.

5. A local account must exist for a user; as described
in the introduction, this creates an undue burden on
system administrators and users alike. This burden
prevents wide adoption of the network services
model in large and dynamically changing commu-
nities.

These problems can, and have been, in some measure
alleviated by clever setup. For example, the impact of
(4) can be alleviated by mapping a grid identity to sev-
eral different local accounts with different capabilities.
(5) is often coped with by working with “shared ac-
counts” (which however introduces many security, au-
dit, accounting and other problems) or by providing a
limited implementation of dynamic accounts [6].

5. Authorization and Enforcement Exten-
sions to GRAM

In this section we describe extensions to the GT2 Grid
Resource Acquisition and Management (GRAM) that
address the shortcomings described above.

We extended the GRAM design to allow authorization
callouts, evaluating the user’s job invocation and man-
agement requests in the context of policies defined by
the resource owner and VO. Out changes to GRAM,
prototyped using GT2, are illustrated in figure 2.

Figure 2: Changes to GRAM; the changed compo-
nent (the Job Manager) has been highlighted in

gray.

In our prototype we experimented with policies written
in plain text files on the resource. These files included
both local resource and VO policies (in a real system
the VO policies would be carried in the VO creden-
tials). This work has recently been tested with the
Akenti [4] system representing the same policies as
described here, and is being adopted by the National
Fusion Collaboratory [2]. In order to show generality of
our approach, we are also experimenting with the
Community Authorization Service (CAS) [7]. Both of
these systems allow for multiple policies sources, but
have significant differences, both in terms of architec-
ture and programming APIs.

5.1. Policy Language

GRAM allows users to start and manage jobs by sub-
mitting requests composed of an action, (e.g. initiate,
cancel, provide status, change priority, etc.), and, in the
case of job initiation, a job description. The job de-
scription is formulated in terms of attributes using the
Resource Specification Language (RSL) [3]. RSL con-
sists of attribute value pairs specifying job parameters
referring to executable description (executable name,
directory where it is located, etc.), and resource re-
quirements (number of CPUs to be used, maxi-
mum/minimum allowable memory, maximum time a
job is allowed to run, etc.).

We have designed a simple policy language that allows
for policy specification in terms of RSL. The policy
assumes that unless a specific stipulation has been
made, an action will not be allowed. It is expressed as a
set of assertions where a user, or a group of users, is
related to a set of assertions. The rules have the form of
user (or group) identity separated by a colon from a set
of action-based assertions that follow the RSL syntax.

In order to express the rules we extended the RSL set
of attributes with the addition of the following:

• Action. The action attribute action represents what
the user wants to do with the job, and currently can
take on values of “start”, “cancel”, “information”,
or “signal”, where signal describes a variety of job
management actions such as changing priority.

• Jobowner. The jobowner attribute denotes the job
initiator and can take on values of the distinguished
name of a job initiator’s grid credential. It is used
mainly to express VO-wide management policy.

• Jobtag. The jobtag attribute has been introduced in
order to enable the specification of VO-wide job
management policies. A jobtag indicates the job
membership in a group of jobs for which policy
can be defined. For example, a set of users with an
administrative role in the VO can be granted the
right to manage all jobs in a particular group. A
policy may require a VO user to submit a job with
a specific jobtag, hence placing it into a group that
is manageable by another user (or group of users).
At present jobtags are statically defined by a policy
administrator.

We also added the following values to RSL:

• “NULL” to denote a non-empty value

• “self” to allow expression of the job initiator's
identity in a policy.

These extensions allow following types of assertions to
be expressed in policy:

• The job request is permitted to contain a particular

attribute a particular value or set of values. This al-
lows, for example, the maximum number of proc-
essors used to be limited or to restrict the name of
the executable to a specified set. Multiple asser-
tions can be made about the same attribute.

• The job request is required to contain a particular
attribute, possibly with a particular value or set of
values. For example, the job request must specify a
jobtag attribute to allow its management by a VO-
defined group of administrators.

• The job request is required not to contain a particu-

lar attribute. Either at all or just with a particular
value or set of values. For example, the job request
must not specify a particular queue, which is re-
served for high-priority certain users.

Our extensions allows a policy to limit not only the
usage of traditional computational resources, but to
dictate the executables they are allowed to invoke, al-
lowing a VO to limit the way in which they can con-
sume resources. Further, by introducing the notion of a
jobtag we are able to express policies allowing users to
manage jobs. The example in figure 3 illustrates how
policy may be expressed.

The fist statement in the policy specifies a requirement
for a group of users whose Grid identities start with the
string " /O=Grid/O=Globus/OU=mcs.anl.gov". The
requirement is that for job invocations (where the ac-
tion is "start"), the job description must contain a jobtag
attribute with some value. This allows us to later write
management policies referring to a specific jobtag.

The second statement in the policy refers to a specific

 &/O=Grid/O=Globus/OU=mcs.anl.gov:
(action = start)(jobtag != NULL)

/O=Grid/O=Globus/OU=mcs.anl.gov/CN= Bo Liu:
&(action = start)(executable = test1)(directory = /sandbox/test)(jobtag = ADS)(count<4)
&(action = start)(executable = test2)(directory = /sandbox/test)(jobtag = NFC)(count<4)

/O=Grid/O=GlobusOU=mcs.anl.gov/CN= KateKeahey:
&(action = start)(executable = TRANSP)(directory = /sandbox/test)(jobtag = NFC)
&(action=cancel)(jobtag=NFC)

Figure 3: Simple VO-wide policy for job management

user, Bo Liu, and states that she can only start jobs us-
ing the "test1" and "test2" executables. The rules also
place constraints on the directory from which the ex-
ecutable can be taken and the jobtag they can be started
with. In addition, a constraint is placed on the number
of processors Bo Liu can use (count < 4).

The third statement in the policy gives user Kate Kea-
hey the right to start jobs using the "TRANSP" execu-
table from a specific directory and with a specific job-
tag. It also gives her the right to cancel all the jobs with
jobtag “NFC”; for example, jobs based on the executa-
ble "test1" started by Bo Liu.

5.2. Enforcing Policies in GRAM

We enforce our policies in GRAM by creating a policy
evaluation point (PEP) controlling all external access to
a resource via GRAM; an action is authorized depend-
ing on decision yielded by the PEP. Policy can be en-
forced in GRAM at multiple PEPs corresponding to
different decision domains; for example a PEP placed
in the Gatekeeper can allow or disallow access based
on the user's Grid identity. Since our work focuses on
job and resource management we established a PEP in
the Job Manager (JM). The JM parses user job descrip-
tions and can therefore evaluate policy that depends on
the nature of the job request in addition to the user's
identity.

Specifically, our additions consisted of the following:

• Designing an authorization callout API to inte-
grate the PEP with the JM. The callout passes to
the PEP authorization module the relevant infor-
mation, such as: the credential of the user request-
ing a remote job, the credential of the user who
originally started the job, the action to be per-
formed (such as start or cancel a job), a unique
job identifier, and the job description expressed in
RSL. The PEP responds through the callout API
with either success or an appropriate authorization
error. This call is made whenever an action needs
to be authorized; that is before creating a job
manager request, and before calls to cancel,
query, and signal a running job.

• Policy-based authorization for job management.
As discussed in section 4, each job management
request other than job startup is currently author-
ized by GRAM so that only the user that started a
job is allowed to manage it. We modified the au-
thorization in GRAM to enable Grid users other
than the job initiator to manage the job based on
policy with decisions rendered through the au-

thorization callout API. In addition to changes to
the authorization model, this also required exten-
sions to the GRAM client allowing the client to
process other identities than that of the client
(specifically, allowing it to recognize the identity
of the job originator).

• RSL parameters. We extended RSL to add the
“jobtag” parameter allowing the user to submit a
job to a specific job management group.

• Errors. We further extended the GRAM protocol
to return authorization errors describing reasons
for authorization denial as well as authorization
system failures.

In order to provide for easy integration of third party
authorization solutions, the callout API provides facili-
ties for runtime configurable callouts. Callouts can be
configured either through a configuration file or an API
call. Configuration consists of specifying an abstract
callout name, the path to the dynamic library that im-
plements the callout and the symbol for the callout in
the library. Callouts are invoked through runtime load-
ing of dynamic libraries using GNU Libtool’s dlopen-
like portability library. Arguments to the callout are
passed using the C variable argument list facility.

The insertion of callout points into JM required defin-
ing a GRAM authorization callout type, i.e. a abstract
callout type, the exact arguments passed to the callout
and a set of errors the callout may return. These callout
points are configured by parsing a global configuration
file.

6. Analysis

Our solution overcame some of the shortcomings out-
lined in section 4.3. However our approach has a num-
ber of problems and outstanding issues that we discuss
in this section.

6.1. Gateway Enforcement Model

A weakness of the gateway approach is that once a
gateway authorizes an action (for example a job execu-
tion); it is no longer involved in the continuous en-
forcement of the policy. GRAM maps incoming re-
quests to static local accounts to perform this continu-
ous policy enforcement.

This has two consequences: (1) the local policy en-
forcement depends on the privileges tied the account
that the user maps to on the local system rather than to

the credential with which the request was made, and (2)
GRAM’s abilities for continuous policy enforcement
are limited by local capabilities for policy enforcement.

The first limitation could be to some extent dealt with
by using dynamic accounts. Dynamic Accounts are
accounts created and configured on the fly by a re-
source management facility. This enables the resource
management system to run jobs on a system for users
that do not have an account on that system, and it also
enables account configuration relevant to policies for a
particular resource management request as opposed to a
static user’s configuration. To some extent a dynamic
account can be also used as a sandbox on the user’s
rights (by modifying user’s group membership to con-
trol file system access for example). On the other hand,
although work has been done to support fine-grain pol-
icy for file access [8], in general accounts allow the
user to modify only very few configuration parameters,
and hence the enforcement implemented in an account
is coarse-grained. For this reason, dynamic accounts
may need to be supplemented by sandboxing.

A sandbox is an environment that imposes restrictions
on resource usage [9]. Sandboxing represents a strong
enforcement solution, having the resource operating
system act as the policy evaluation and enforcement
modules and is largely complementary to the gateway
approach. However, while they provide a solution with
relatively high degree of security, they are hard to im-
plement portably and may introduce a performance
penalty

.

6.2. Job Manager Trust Model

In the GRAM architecture, the job manager runs with
the user’s local credentials; this makes the job manager
a less than ideal vehicle for policy enforcement. The
reasons for that are twofold. First, from the security
perspective this makes it a poor choice for a policy en-
forcement point since it is vulnerable to tampering by
the user that could result in changed in policy enforce-
ment. Secondly, this effectively limits enforcement
potential for VO-wide job management. For example, a
user managing a job may cancel a job started by some-
body else (by virtue of the fact that the job manager is
running with the job initiator’s local credential), but
they may not apply their higher resource rights to, for
example, raise the job’s priority.

One possible solution to this problem in the context of
GRAM architecture would be to locate the policy en-
forcement point in the gatekeeper. However, this would
increase the vulnerability of the system by placing more
complex code into the trusted component of the system,

increasing chances for logic errors, buffer overflows,
etc.

Another possibility would be for policy enforcement to
be done by trusted services like the local operating sys-
tem. As discussed earlier, this is difficult today because
most operating systems do not have the support for
fine-grain policies that we require. Investigation into
sandboxing techniques remains an open research issue.

6.3 Policy Language

Our implementation currently expresses policy in terms
of the same resource specification language (RSL) that
GRAM uses to describe jobs. While this allows for
easy comparison of a job description with a policy, it is
not a standard policy language. Policy administrators
are not familiar with RSL, and our initial experiences
show that expressing policies in these terms is not natu-
ral to this community. This difficulty is compounded by
the fact that the syntax is not be supported by standard
policy tools. We are therefore investigating existing
policy languages as a replacement to our RSL-based
scheme. With the merging of Grid technologies and
Web Service-based technologies in OGSA[10], lan-
guages based on XML, such as XACML [11] and
XrML [12], are being scrutinized by the Grid security
community in general and are viable candidates.

6. Conclusions and Future Work

We have described the design and implementation of
an authorization system allowing for enforcement of
fine-grained policies and VO-wide management of re-
mote jobs. To implement this design we proposed
changes to the Globus Toolkit GRAM design and de-
signed a policy language suitable for our needs. We are
planning to use the same mechanism to provide plug-
gable authorization in other components of the Globus
Toolkit.

While our work solves some of the problems with
GRAM, it also leaves some open questions, mainly in
the area of enforcement, where sandboxing and dy-
namic account management remain open questions.
Since our work began, a new version of GRAM has
been releases as part of version 3 of the Globus Toolkit
(GT3). The new GRAM design, described in [13], of-
fers some enhancements that we see benefiting our
work. For example, the job description is available to a
trusted service as part of job creation, which allows it to
configure the local account, and creates potential for
better integration with dynamic accounts.

Acknowledgements

We are pleased to acknowledge contributions to this
work by Mary Thompson of LBNL. This work was
supported by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, Office of
Science, SciDAC Program, U.S. Department of Energy,
under Contract W-31-109-ENG-38.

Bibliography

1. Foster, I., C. Kesselman, and S. Tuecke, The
Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of
High Performance Computing Applications,
2001. 15(3): p. 200-222.

2. Keahey, K., T. Fredian, Q. Peng, D.P. Schis-
sel, M. Thompson, I. Foster, M. Greenwald,
and D. McCune, Computational Grids in Ac-
tion: the National Fusion Collaboratory. Fu-
ture Generation Computing Systems (to ap-
pear), October 2002. 18(8): p. 1005-1015.

3. Czajkowski, K., I. Foster, N. Karonis, C. Kes-
selman, S. Martin, W. Smith, and S. Tuecke, A
Resource Management Architecture for Meta-
computing Systems, in 4th Workshop on Job
Scheduling Strategies for Parallel Processing.
1998, Springer-Verlag. p. 62-82.

4. Mary Thompson, W.J., Srilekha Mudumbai,
Gary Hoo, Keith Jackson, Abdelilah Essiari,
Certificate-based Access Control for Widely
Distributed Resources, in Proc. 8th Usenix Se-
curity Symposium. 1999.

5. Butler, R., D. Engert, I. Foster, C. Kesselman,
S. Tuecke, J. Volmer, and V. Welch, Design
and Deployment of a National-Scale Authenti-
cation Infrastructure. IEEE Computer, 2000.
33(12): p. 60-66.

6. dynamic accounts.
http://www.gridpp.ac.uk/gridmapdir/.

7. L. Pearlman, V.W., I. Foster, C. Kesselman, S.
Tuecke. A Community Authorization Service
for Group Collaboration. in submitted to IEEE
Worksop on Policies for Distributed Systems
and Networks. 2002.

8. Lorch M. and K. D. Supporting Secure Ad-hoc
User Collaboration in Grid Environments. in
Proceedings of the 3rd Int. Workshop on Grid
Computing - Grid 2002, Baltimore, MD, USA.
2002.

9. Chang, F., A. Itzkovitz, and V. Karamacheti,
User-level Resource-constrained Sandboxing.
Proceedings of the USENIX Windows Sys-
tems Symposium (previously USENIX-NT),
2000.

10. Foster, I., C. Kesselman, J. Nick, and S.
Tuecke, The Physiology of the Grid: An Open
Grid Services Architecture for Distributed
Systems Integration. 2002: Open Grid Service
Infrastructure WG, Global Grid Forum,.

11. OASIS eXtensible Access Control Markup
Language (XACML) Committee Specification
1.0 (Revision 1). http://www.oasis-
open.org/committees/xacml/docs/s-xacml-
specification-1.0-1.doc, 2002.

12. XRML. http://www.xrml.org/get_XrML.asp.
13. Welch, V., F. Siebenlist, I. Foster, J. Bresna-

han, K. Czajkowski, J. Gawor, C. Kesselman,
S. Meder, L. Pearlman, and S. Tuecke, GSI3:
Security for Grid Services (Draft). Submitted
to HPDC 2003.

